Algorithms and complexity for metric dimension and location-domination on interval and permutation graphs

Florent Foucaud Université Blaise Pascal, Clermont-Ferrand, France

joint work with:

George B. Mertzios (Durham University, United Kingdom)

Reza Naserasr (Université Paris-Sud, France)

Aline Parreau (Université Lyon 1, France)

Petru Valicov (Université Aix-Marseille, France)

June 2015

Definition - Locating-dominating set (Slater, 1980's)

 $D \subseteq V(G)$ locating-dominating set of G:

- for every $u \in V$, $N[v] \cap D \neq \emptyset$ (domination).
- $\forall u \neq v \text{ of } V(G) \setminus D, \ N(u) \cap D \neq N(v) \cap D \text{ (location)}.$

Motivation: fault-detection in networks.

 \rightarrow The set D of grey processors is a set of fault-detectors.

Definition - Locating-dominating set (Slater, 1980's)

 $D \subseteq V(G)$ locating-dominating set of G:

- for every $u \in V$, $N[v] \cap D \neq \emptyset$ (domination).
- $\forall u \neq v \text{ of } V(G) \setminus D, N(u) \cap D \neq N(v) \cap D \text{ (location)}.$

Notation. location-domination number LD(G): smallest size of a locating-dominating set of G

Definition - Locating-dominating set (Slater, 1980's)

 $D \subseteq V(G)$ locating-dominating set of G:

- for every $u \in V$, $N[v] \cap D \neq \emptyset$ (domination).
- $\forall u \neq v \text{ of } V(G) \setminus D, \ N(u) \cap D \neq N(v) \cap D \text{ (location)}.$

Notation. location-domination number LD(G): smallest size of a locating-dominating set of G

Domination number: $\gamma(P_n) = \left\lceil \frac{n}{3} \right\rceil$

Location-domination number: $LD(P_n) = \left\lceil \frac{2n}{5} \right\rceil$

Definition - Locating-dominating set (Slater, 1980's)

 $D \subseteq V(G)$ locating-dominating set of G:

- for every u ∈ V, N[v] ∩ D ≠ Ø (domination).
 ∀u ≠ v of V(G) \ D, N(u) ∩ D ≠ N(v) ∩ D (location).

Notation. location-domination number LD(G): smallest size of a locating-dominating set of G

Notion related to test covers in hypergraphs (also known as separating systems, distinguishing transversals...)

Theorem (Slater, 1980's)

G graph of order n, LD(G) = k. Then $n \le 2^k + k - 1$, i.e. $LD(G) = \Omega(\log n)$. Theorem (Slater, 1980's)

G graph of order n, LD(G) = k. Then $n \le 2^k + k - 1$, i.e. $LD(G) = \Omega(\log n)$.

Tight example (k = 4):

Theorem (Slater, 1980's)

G graph of order n, LD(G) = k. Then $n \le 2^k + k - 1$, i.e. $LD(G) = \Omega(\log n)$.

Graphs G with large LD(G):

LOCATING-DOMINATING SET

INPUT: Graph G, integer k. **QUESTION**: Is there a locating-dominating set of G of size k?

- polynomial for:
 - graphs of bounded cliquewidth via MSOL (Courcelle's theorem)
 - chain graphs (Fernau, Heggernes, van't Hof, Meister, Saei, 2015)

• NP-complete for:

- bipartite graphs (Charon, Hudry, Lobstein, 2003)
- planar bipartite unit disk graphs (Müller & Sereni, 2009)
- planar graphs, arbitrary girth (Auger, 2010)
- planar bipartite subcubic graphs (F. 2013)
- co-bipartite graphs, split graphs (F. 2013)
- line graphs (F., Gravier, Naserasr, Parreau, Valicov, 2013)

LOCATING-DOMINATING SET

INPUT: Graph G, integer k. **QUESTION**: Is there a locating-dominating set of G of size k?

• Trivially FPT for parameter k because $n \le 2^k + k - 1$: whole graph is kernel. $\longrightarrow n^{O(k)} = 2^{k^{O(k)}}$ -time brute-force algorithm

Definition - Interval graph

Intersection graph of intervals of the real line.

Definition - Permutation graph

Given two parallel lines A and B: intersection graph of segments joining A and B.

 $\ensuremath{\mathsf{LOCATING}}$ DOMINATING SET is NP-complete for graphs that are both interval and permutation.

LOCATING-DOMINATING SET is NP-complete for graphs that are both interval and permutation.

Reduction from 3-DIMENSIONAL MATCHING:

- INPUT: A, B, C sets and $\mathscr{T} \subset A \times B \times C$ triples
- QUESTION: is there a perfect 3-dimensional matching $M \subset T$, i.e., each element of $A \cup B \cup C$ appears exactly once in M?

LOCATING-DOMINATING SET is NP-complete for graphs that are both interval and permutation.

Reduction from 3-DIMENSIONAL MATCHING:

- INPUT: A, B, C sets and $\mathscr{T} \subset A \times B \times C$ triples
- QUESTION: is there a perfect 3-dimensional matching $M \subset T$, i.e., each element of $A \cup B \cup C$ appears exactly once in M?

Main idea: an interval can separate pairs of intervals far away from each other (without affecting what lies in between)

Dominating gadget: ensure all intervals are dominated and most, separated.

Complexity - transmitters

Transmitter gadget: to separate $\{uv^1, uv^2\}$ and $\{vw^1, vw^2\}$, either:

- 1. take only v into solution, or
- 2. take both u, w and separate pairs $\{x_1, x_2\}, \{y_1, y_2\}, \{z_1, z_2\}$ "for free".

Complexity - transmitters

Transmitter gadget: to separate $\{uv^1, uv^2\}$ and $\{vw^1, vw^2\}$, either:

- 1. take only v into solution, or
- 2. take both u, w and separate pairs $\{x_1, x_2\}, \{y_1, y_2\}, \{z_1, z_2\}$ "for free".

3DM instance on 3n elements, m triples.

 \exists 3-dimensional matching $\iff LD(G) \le 94m + 10n$

three element gadgets for a, b and c

Complexity of LOCATING-DOMINATING SET

Now, $w \in V(G)$ separates $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:

 $\forall u \neq v \text{ in } V(G)$, there exists $w \in R$ that separates $\{u, v\}$.

Motivation ("GPS" system): position determined by distances to 4 satellites

Now, $w \in V(G)$ separates $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:

Now, $w \in V(G)$ separates $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:

Now, $w \in V(G)$ separates $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:

Now, $w \in V(G)$ separates $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:

Now, $w \in V(G)$ separates $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:

Now, $w \in V(G)$ separates $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:

Now, $w \in V(G)$ separates $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G: $\forall u \neq v$ in V(G), there exists $w \in R$ that separates $\{u, v\}$.

MD(G): metric dimension of G, minimum size of a resolving set of G.

Remark: $MD(G) \leq LD(G)$.

Now, $w \in V(G)$ separates $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G: $\forall u \neq v$ in V(G), there exists $w \in R$ that separates $\{u, v\}$.

MD(G): metric dimension of G, minimum size of a resolving set of G.

Remark: $MD(G) \leq LD(G)$.

Complexity of METRIC DIMENSION

METRIC DIMENSION

INPUT: Graph G, integer k. **QUESTION**: Is there a resolving set of G of size k?

- polynomial for:
 - trees (simple leg rule: Slater, 1975)
 - outerplanar graphs (Díaz, van Leeuwen, Pottonen, Serna, 2012)
 - bounded cyclomatic number (Epstein, Levin, Woeginger, 2012)
 - cographs (Epstein, Levin, Woeginger, 2012)
 - chain graphs (Fernau, Heggernes, van't Hof, Meister, Saei, 2015)
- NP-complete for:
 - general graphs (Garey & Johnson, 1979)
 - planar graphs (Díaz, van Leeuwen, Pottonen, Serna, 2012)
 - bipartite, co-bipartite, line, split graphs (Epstein, Levin, Woeginger, 2012)
 - Gabriel unit disk graphs (Hoffmann & Wanke, 2012)

Complexity of METRIC DIMENSION

METRIC DIMENSION

INPUT: Graph G, integer k. **QUESTION**: Is there a resolving set of G of size k?

- W[2]-hard for parameter k, even for bipartite subcubic graphs (Hartung & Nichterlein, 2013)
- Trivially FPT when diameter D = f(k) since $n \le D^k + k$:
- ightarrow whole graph is kernel (example: split graphs, co-bipartite graphs)

G graph of diameter 2. S resolving set of G.

ightarrow Every vertex in $V(G) \setminus S$ is distiguished by its neighborhood within S

G graph of diameter 2. S resolving set of G.

ightarrow Every vertex in $V(G) \setminus S$ is distiguished by its neighborhood within S

Almost equivalent to locating-dominating sets!

G graph of diameter 2. S resolving set of G.

 \rightarrow Every vertex in $V(G) \setminus S$ is distiguished by its neighborhood within S

Almost equivalent to locating-dominating sets!

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)

LOCATING-DOMINATING SET is NP-complete for graphs that are both interval and permutation.

Reduction from LOCATING-DOMINATING SET to METRIC DIMENSION:

MD(G) = LD(G) + 2

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)

METRIC DIMENSION is NP-complete for graphs that are both interval and permutation (and have diameter 2).

Complexity of METRIC DIMENSION

FPT algorithm for METRIC DIMENSION on interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)

METRIC DIMENSION can be solved in time $2^{O(k^4)}n$ on interval graphs.

(Recall: METRIC DIMENSION W[2]-hard for parameter k)

FPT algorithm for METRIC DIMENSION on interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)

METRIC DIMENSION can be solved in time $2^{O(k^4)}n$ on interval graphs.

Main idea: use dynamic programming on a path-decomposition of G^4

- each bag has size $O(k^2)$.
- \bullet it suffices to separate vertices at distance 2 in ${\it G}$
- "transmission" lemma for separation constraints

METRIC DIMENSION can be solved in time $2^{O(k^4)}n$ on interval graphs.

Main idea: use dynamic programming on a path-decomposition of G^4

• each bag has size $O(k^2)$.

 G^4 is an interval graph (with same left and right endpoint orders as G). Each bag of a path-decomposition of G^4 is a clique in G^4 .

Lemma: If $H \subset G$ has diameter D, then $|V(H)| = O(D \cdot k^2)$.

Note: in general graphs, $|V(H)| = O(D^k)$

FPT algorithm for METRIC DIMENSION on interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)

METRIC DIMENSION can be solved in time $2^{O(k^4)}n$ on interval graphs.

Main idea: use dynamic programming on a path-decomposition of G^4

- each bag has size $O(k^2)$.
- \bullet it suffices to separate vertices at distance 2 in ${\cal G}$

Definition (distance 2 resolving set): set that separates all pairs u, v with $d(u, v) \le 2$.

Lemma: In an interval graph G, $R \subseteq V(G)$ is a resolving set if and only if R a distance 2 resolving set.

 \rightarrow Every pair to be separated will be present in some bag.

METRIC DIMENSION can be solved in time $2^{O(k^4)}n$ on interval graphs.

Main idea: use dynamic programming on a path-decomposition of G^4

- each bag has size $O(k^2)$.
- \bullet it suffices to separate vertices at distance 2 in ${\it G}$
- "transmission" lemma for separation constraints

Definition (rightmost path v, v^1, v^2, \dots of v):

Lemma: vertex x separates u, v if and only if (for some/all i) x separates u^i, v^i .

 \rightarrow Information about (non-)separation transmitted from bag to bag

FPT algorithm for METRIC DIMENSION on interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)

METRIC DIMENSION can be solved in time $2^{O(k^4)}n$ on interval graphs.

Main idea: use dynamic programming on a path-decomposition of G^4

- each bag has size $O(k^2)$.
- \bullet it suffices to separate vertices at distance 2 in ${\it G}$
- "transmission" lemma for separation constraints

- Complexity of LD+MD for unit interval + bipartite permutation?
- Complexity of MD for bounded treewidth? (open for TW 2)
- Parameterized complexity of MD (parameter k)?
 → permutation, chordal, planar, line/claw-free...

- Complexity of LD+MD for unit interval + bipartite permutation?
- Complexity of MD for bounded treewidth? (open for TW 2)
- Parameterized complexity of MD (parameter k)?
 → permutation, chordal, planar, line/claw-free...

THANKS FOR YOUR ATTENTION