Algorithms and complexity for metric dimension and location-domination on interval and permutation graphs

Florent Foucaud
Université Blaise Pascal, Clermont-Ferrand, France

joint work with:
George B. Mertzios (Durham University, United Kingdom)
Reza Naserasr (Université Paris-Sud, France)
Aline Parreau (Université Lyon 1, France)
Petru Valicov (Université Aix-Marseille, France)

June 2015

Location-domination

Definition - Locating-dominating set (Slater, 1980's)

$D \subseteq V(G)$ locating-dominating set of G :

- for every $u \in V, N[v] \cap D \neq \emptyset$ (domination).
- $\forall u \neq v$ of $V(G) \backslash D, N(u) \cap D \neq N(v) \cap D$ (location).

Motivation: fault-detection in networks.
\rightarrow The set D of grey processors is a set of fault-detectors.

Location-domination

Definition - Locating-dominating set (Slater, 1980's)
$D \subseteq V(G)$ locating-dominating set of G :

- for every $u \in V, N[v] \cap D \neq \emptyset$ (domination).
- $\forall u \neq v$ of $V(G) \backslash D, N(u) \cap D \neq N(v) \cap D$ (location).

Notation. location-domination number $L D(G)$: smallest size of a locating-dominating set of G

Location-domination

Definition - Locating-dominating set (Slater, 1980's)

$D \subseteq V(G)$ locating-dominating set of G :

- for every $u \in V, N[v] \cap D \neq \emptyset$ (domination).
- $\forall u \neq v$ of $V(G) \backslash D, N(u) \cap D \neq N(v) \cap D$ (location).

Notation. location-domination number $L D(G)$: smallest size of a locating-dominating set of G

Domination number: $\gamma\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$

Location-domination number: $L D\left(P_{n}\right)=\left\lceil\frac{2 n}{5}\right\rceil$

Definition - Locating-dominating set (Slater, 1980's)
$D \subseteq V(G)$ locating-dominating set of G :

- for every $u \in V, N[v] \cap D \neq \emptyset$ (domination).
- $\forall u \neq v$ of $V(G) \backslash D, N(u) \cap D \neq N(v) \cap D$ (location).

Notation. location-domination number $L D(G)$: smallest size of a locating-dominating set of G

Notion related to test covers in hypergraphs (also known as separating systems, distinguishing transversals...)

Remarks

Theorem (Slater, 1980's)

G graph of order $n, L D(G)=k$. Then $n \leq 2^{k}+k-1$, i.e. $L D(G)=\Omega(\log n)$.

Remarks

Theorem (Slater, 1980's)

G graph of order $n, L D(G)=k$. Then $n \leq 2^{k}+k-1$, i.e. $L D(G)=\Omega(\log n)$.

Tight example ($k=4$):

Remarks

Theorem (Slater, 1980's)

G graph of order $n, L D(G)=k$. Then $n \leq 2^{k}+k-1$, i.e. $L D(G)=\Omega(\log n)$.

Tight example ($k=4$):

Graphs G with large $L D(G)$:

Complexity of LOCATING-DOMINATING SET

LOCATING-DOMINATING SET

INPUT: Graph G, integer k.
QUESTION: Is there a locating-dominating set of G of size k ?

- polynomial for:
- graphs of bounded cliquewidth via MSOL (Courcelle's theorem)
- chain graphs (Fernau, Heggernes, van't Hof, Meister, Saei, 2015)
- NP-complete for:
- bipartite graphs (Charon, Hudry, Lobstein, 2003)
- planar bipartite unit disk graphs (Müller \& Sereni, 2009)
- planar graphs, arbitrary girth (Auger, 2010)
- planar bipartite subcubic graphs (F. 2013)
- co-bipartite graphs, split graphs (F. 2013)
- line graphs (F., Gravier, Naserasr, Parreau, Valicov, 2013)

Complexity of LOCATING-DOMINATING SET

LOCATING-DOMINATING SET

INPUT: Graph G, integer k.
QUESTION: Is there a locating-dominating set of G of size k ?

- Trivially FPT for parameter k because $n \leq 2^{k}+k-1$: whole graph is kernel.
$\longrightarrow n^{O(k)}=2^{k^{O(k)}}$-time brute-force algorithm

Interval and permutation graphs

Definition - Interval graph

Intersection graph of intervals of the real line.

Given two parallel lines A and B : intersection graph of segments joining A and B.

Complexity - Interval and permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)
LOCATING-DOMINATING SET is NP-complete for graphs that are both interval and permutation.

Complexity - Interval and permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)

LOCATING-DOMINATING SET is NP-complete for graphs that are both interval and permutation.

Reduction from 3-DIMENSIONAL MATCHING:

- INPUT: A, B, C sets and $\mathscr{T} \subset A \times B \times C$ triples
- QUESTION: is there a perfect 3-dimensional matching $M \subset T$, i.e., each element of $A \cup B \cup C$ appears exactly once in M ?

Complexity - Interval and permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)

LOCATING-DOMINATING SET is NP-complete for graphs that are both interval and permutation.

Reduction from 3-DIMENSIONAL MATCHING:

- INPUT: A, B, C sets and $\mathscr{T} \subset A \times B \times C$ triples
- QUESTION: is there a perfect 3-dimensional matching $M \subset T$, i.e., each element of $A \cup B \cup C$ appears exactly once in M ?

Main idea: an interval can separate pairs of intervals far away from each other (without affecting what lies in between)

Complexity - gadgets

Dominating gadget: ensure all intervals are dominated and most, separated.

Complexity - transmitters

Transmitter gadget: to separate $\left\{u v^{1}, u v^{2}\right\}$ and $\left\{v w^{1}, v w^{2}\right\}$, either:

1. take only v into solution, or
2. take both u, w - and separate pairs $\left\{x_{1}, x_{2}\right\}$, $\left\{y_{1}, y_{2}\right\},\left\{z_{1}, z_{2}\right\}$ "for free".

Complexity - transmitters

Transmitter gadget: to separate $\left\{u v^{1}, u v^{2}\right\}$ and $\left\{v w^{1}, v w^{2}\right\}$, either:

1. take only v into solution, or
2. take both u, w - and separate pairs $\left\{x_{1}, x_{2}\right\},\left\{y_{1}, y_{2}\right\},\left\{z_{1}, z_{2}\right\}$ "for free".

Complexity - reduction

3DM instance on $3 n$ elements, m triples.
\exists 3-dimensional matching $\Longleftrightarrow L D(G) \leq 94 m+10 n$

triple gadget for triple $\{a, b, c\}$
three element gadgets for a, b and c

Complexity of LOCATING-DOMINATING SET

Metric dimension

Now, $w \in V(G)$ separates $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$
Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that separates $\{u, v\}$.
Motivation ("GPS" system): position determined by distances to 4 satellites

Metric dimension

Now, $w \in V(G)$ separates $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$
Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that separates $\{u, v\}$.

Metric dimension

Now, $w \in V(G)$ separates $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$
Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that separates $\{u, v\}$.

Metric dimension

Now, $w \in V(G)$ separates $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$
Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that separates $\{u, v\}$.

Metric dimension

Now, $w \in V(G)$ separates $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$
Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that separates $\{u, v\}$.

Metric dimension

Now, $w \in V(G)$ separates $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$
Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)

$$
R \subseteq V(G) \text { resolving set of } G \text { : }
$$

$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that separates $\{u, v\}$.

Metric dimension

Now, $w \in V(G)$ separates $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$
Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that separates $\{u, v\}$.

Metric dimension

Now, $w \in V(G)$ separates $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that separates $\{u, v\}$.
$M D(G)$: metric dimension of G, minimum size of a resolving set of G.

Remark: $M D(G) \leq L D(G)$.

Metric dimension

Now, $w \in V(G)$ separates $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$
Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that separates $\{u, v\}$.
$M D(G)$: metric dimension of G, minimum size of a resolving set of G.

Remark: $M D(G) \leq L D(G)$.

$$
M D(G)=1 \Longleftrightarrow G \text { is a path }
$$

Complexity of METRIC DIMENSION

METRIC DIMENSION

INPUT: Graph G, integer k.
QUESTION: Is there a resolving set of G of size k ?

- polynomial for:
- trees (simple leg rule: Slater, 1975)
- outerplanar graphs (Díaz, van Leeuwen, Pottonen, Serna, 2012)
- bounded cyclomatic number (Epstein, Levin, Woeginger, 2012)
- cographs (Epstein, Levin, Woeginger, 2012)
- chain graphs (Fernau, Heggernes, van't Hof, Meister, Saei, 2015)
- NP-complete for:
- general graphs (Garey \& Johnson, 1979)
- planar graphs (Díaz, van Leeuwen, Pottonen, Serna, 2012)
- bipartite, co-bipartite, line, split graphs (Epstein, Levin, Woeginger, 2012)
- Gabriel unit disk graphs (Hoffmann \& Wanke, 2012)

Complexity of METRIC DIMENSION

METRIC DIMENSION

INPUT: Graph G, integer k.
QUESTION: Is there a resolving set of G of size k ?

- W[2]-hard for parameter k, even for bipartite subcubic graphs (Hartung \& Nichterlein, 2013)
- Trivially FPT when diameter $D=f(k)$ since $n \leq D^{k}+k$:
\rightarrow whole graph is kernel (example: split graphs, co-bipartite graphs)

Interval and permutation graphs

G graph of diameter 2. S resolving set of G.
\rightarrow Every vertex in $V(G) \backslash S$ is distiguished by its neighborhood within S

Interval and permutation graphs

G graph of diameter 2. S resolving set of G.
\rightarrow Every vertex in $V(G) \backslash S$ is distiguished by its neighborhood within S
Almost equivalent to locating-dominating sets!

Interval and permutation graphs

G graph of diameter 2 . S resolving set of G.
\rightarrow Every vertex in $V(G) \backslash S$ is distiguished by its neighborhood within S
Almost equivalent to locating-dominating sets!

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)
LOCATING-DOMINATING SET is NP-complete for graphs that are both interval and permutation.

Reduction from LOCATING-DOMINATING SET to METRIC DIMENSION:

$$
M D(G)=L D(G)+2
$$

```
Theorem (F., Mertzios, Naserasr, Parreau, Valicov)
```

METRIC DIMENSION is NP-complete for graphs that are both interval and permutation (and have diameter 2).

Complexity of METRIC DIMENSION

FPT algorithm for METRIC DIMENSION on interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)
METRIC DIMENSION can be solved in time $2^{O\left(k^{4}\right)}$ n on interval graphs.
(Recall: METRIC DIMENSION W[2]-hard for parameter k)

FPT algorithm for METRIC DIMENSION on interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)
METRIC DIMENSION can be solved in time $2^{O\left(k^{4}\right)}$ n on interval graphs.

Main idea: use dynamic programming on a path-decomposition of G^{4}

- each bag has size $O\left(k^{2}\right)$.
- it suffices to separate vertices at distance 2 in G
- "transmission" lemma for separation constraints

FPT algorithm for METRIC DIMENSION on interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)
METRIC DIMENSION can be solved in time $2^{O\left(k^{4}\right)}$ n on interval graphs.

Main idea: use dynamic programming on a path-decomposition of G^{4}

- each bag has size $O\left(k^{2}\right)$.
G^{4} is an interval graph (with same left and right endpoint orders as G).
Each bag of a path-decomposition of G^{4} is a clique in G^{4}.
Lemma: If $H \subset G$ has diameter D, then $|V(H)|=O\left(D \cdot k^{2}\right)$.
Note: in general graphs, $|V(H)|=O\left(D^{k}\right)$

FPT algorithm for METRIC DIMENSION on interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)
METRIC DIMENSION can be solved in time $2 O\left(k^{4}\right)_{n}$ on interval graphs.

Main idea: use dynamic programming on a path-decomposition of G^{4}

- each bag has size $O\left(k^{2}\right)$.
- it suffices to separate vertices at distance 2 in G

Definition (distance 2 resolving set): set that separates all pairs u, v with $d(u, v) \leq 2$.

Lemma: In an interval graph $G, R \subseteq V(G)$ is a resolving set if and only if R a distance 2 resolving set.
\rightarrow Every pair to be separated will be present in some bag.

FPT algorithm for METRIC DIMENSION on interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)
METRIC DIMENSION can be solved in time $2 O\left(k^{4}\right) n$ on interval graphs.

Main idea: use dynamic programming on a path-decomposition of G^{4}

- each bag has size $O\left(k^{2}\right)$.
- it suffices to separate vertices at distance 2 in G
- "transmission" lemma for separation constraints

Definition (rightmost path v, v^{1}, v^{2}, \ldots of v):

Lemma: vertex x separates u, v if and only if (for some/all i) x separates u^{i}, v^{i}.
\rightarrow Information about (non-)separation transmitted from bag to bag

FPT algorithm for METRIC DIMENSION on interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)
METRIC DIMENSION can be solved in time $2^{O\left(k^{4}\right)}$ n on interval graphs.

Main idea: use dynamic programming on a path-decomposition of G^{4}

- each bag has size $O\left(k^{2}\right)$.
- it suffices to separate vertices at distance 2 in G
- "transmission" lemma for separation constraints

Open problems

- Complexity of LD+MD for unit interval + bipartite permutation?
- Complexity of MD for bounded treewidth? (open for TW 2)
- Parameterized complexity of MD (parameter k)?
\rightarrow permutation, chordal, planar, line/claw-free...
- Complexity of LD+MD for unit interval + bipartite permutation?
- Complexity of MD for bounded treewidth? (open for TW 2)
- Parameterized complexity of MD (parameter k)? \rightarrow permutation, chordal, planar, line/claw-free...

THANKS FOR YOUR ATTENTION

